CSCE 221.509 | Fibonacci and Recursion
Natural numbers apparently don’t necessarily involve the number zero
Definition of Natural Numbers
Base case: n=0
n=0 is a natural number
Successive case: n_{i+1} = n_i + 1
if n_i is a natural number, then n_i + 1 is a natural number.
Fibonacci sequence
There was the rabbit Fibonacci sequence analogy
F(0) = 1
F(1) = 1
F(2) = F(1) + F(0)
F(3) = F(2) + F(1)
F(4) = F(3) + F(2)
F(n) = F(n-1) + F(n-2), for n > 1
Algorithm Fib(n)
Input: n //rank of fib. number
Output: actual fib. number
if n < 2 then
return 1;
end if
return F(n-1) + Fib(n-2)
Fib(5) = (Fib(4) + Fib(3)) = ((Fib(3) + Fib(2)) + (Fib(2) + Fib(1)))
Do the analysis to speed it up.
T(n)
T(0) = 1
T(1) = 1
T(n-1) + T(n-2)
So T(n) = T(n-1) + T(n-2) + 1
T(n) = 2F(n) - 1
Note: T(n-2) < T(n-1), for n >= 3
T(n) < T(n-1) + T(n-1) +1
T(n) < 2T(n-1) + 1
Note: T(n-1) < 2T(n-2) + 1
T(n) < 2^2 T(n-2) + 2 + 1
Note: T(n-2) < 2T(n-3) + 1
T(n) < 2^3T(n-3) + 2^2 + 2 + 1
…
\(T(n) \lt 2^k(n-k) + (2^{k-1} + \dots + 2^2 + 2 + 1)\)
Side note: how to solve
\(S(k) = (2^{k-1} + \dots + 2^2 + 2 + 1)\)
\(2 \ast S(k) = (2^k + \dots + 2^3 + 2^2 + 2)\)
\(2 \ast S(k) - S(k) = 2^k + 2^{k-1} - 2^{k-1} + … + 2^2 - 2^2 + 2 - 2 + 1\)
So \(S(k) = 2^k + 1\)
Therefore
\(T(n) \lt 2^k \ast T(n-k) + (2^k + 1)\)
\(T(n) \lt 2^{n-1} \ast T(1) + (2^{n-1} - 1)\)
\(T(n) \lt 2^{n-1} + 2^{n-1} - 1\)
\(T(n) \lt 2^n - 1\)
Fibonacci 2
- Start with \(F(0)\) and \(F(1)\)
- Always keep the last two value, \(F(i-1)\) and \(F(i-2)\)
- Compute until \(F(i=n)\)
In this case, \(T(n) = n\)
This is called dynamic programming, when we save data that is frequently used.
How can we do better?
Closed form of \(F(n)\)
\(F(n) = \frac{(golden\ ratio)^n - (golden\ ratio\ conjugate)^n}{\sqrt{5}}\)
\(T(n) = 2*(the\ cost\ of\ the\ power\ function)\)
The actual \(T(n)\) for the recursive function is \(O((golden\ ratio)^n)\)
\(a^n = a \ast a \ast a \ast a \ast a \ast \dots \ast a\)
Which would be O(n) and worse than the dynamic programming version
\(a^n = a^{n/2} \ast a^{n/2}\ \text{if n is even}\)
\(a^n = a^{n/2} \ast a^{n/2} \ast a\ \text{if n is odd}\)
Next: Solve the power function analysis